The Focalization of Sound

by | Oct 22, 2022 | Physics, Experiments

Introduction

Nowadays, scientists have discovered a way to focus sound waves by transmitting the ultrasonic wave in a straight line that could eliminate the audible sound of its path. But the problem is that the focalisation of sound is very costly. So, to reduce its cost-effectiveness, we decided to perform this experiment to lower the cost of focusing sound.

Aim

To develop a low-cost process of focusing sound waves with the help of the parabolic dish and the sound-absorbent material.

Theory

1. The process in which diverging sound waves, spherical sound waves, or plane sound waves get converted into converging sound waves is called sound focusing.

2. The focusing of sound is done through reflection and refraction.

3. The factors that affect the quality of sound focusing are the size and shape of the focal region and the amplification (of the sound pressure).

4. Obtaining clear images in ultrasonic microscopy, holography, and ultrasonic viewers, sound focusing is used. And also used in scanning systems for medical diagnostic instruments with an ultrasonic beam.

Requirements

1. One-end open soundbox of measurement (20.75 X 15 X 15)inches which are made up of particleboard,

2. Speaker,

3. Parabolic dish,

4. Sheetrock,

5. Styrofoam,

6. Fibreglass,

7. Decibel meter.

Procedure

Step 1: Take the soundbox.

Step 2: Suspend the speaker in a cradle so that it can move one inch inward and outward.

Step 3: Transmit a constant sound frequency at a level of 105 DB using the speaker.

Step 4: This project will consist of three small tests and one final test.

Step 5: In the first test, determine whether the material of the parabolic dish affects the sound focusing quality.

Step 6: Take the measurement from different locations around each of the parabolic dishes with the help of a decibel meter.

Step 7: In the second test, determine whether the position of the speaker affects the sound focusing quality. To check whether the speaker directed the best sound from 2, 3, or 4 inches, take the measurement using a decibel meter from a different position from the back of each dish.

Step 8: In the third test, determine whether styrofoam, sheet glass, or fibreglass absorbed most of the sounds. Cut these materials to line the walls of the soundbox.

Step 9: Measure the sound of each material from 1 ft. outside the box.

Step 10: In the final test, combine the result of the previous three tests and check whether sound focusing is possible.

Observation

1. We observed from our experiment that a glass dish was most capable of sound focusing in the first test.

2. In the second test, we noted that if we place the speaker 2 inches from the rear of the dish, then the sound focuses more.

3. Our third test noted that the fibreglass insulation was the most capable of sound focusing.

Result

1. In our test, we noted that when the speaker is placed 2 inches from the back of the dish, situated inside the fibreglass insulation-coated walls of the soundbox, focus most of the sound.

2. We successfully focused 3-5 ft in front of the dish, and in other directions, the spread of sound was limited.

Conclusion

We conclude that the sound can be focused with the help of a parabolic dish and a sound-absorbent material in a very cost-effective way.

Viva questions with answers

Q.1 What was the aim of your experiment?

ANS. To develop a low-cost process of focusing sound waves with the help of the parabolic dish and the sound-absorbent material.

Q.2 What do you understand about sound focusing?

ANS. The process in which diverging sound waves, spherical sound waves, or plane sound waves get converted into converging sound waves is called sound focusing.

Q.3 In what position did you place the speaker for sound focusing?

ANS. 2 inches from the back of the dish.

Q.4 Which glass was most capable of focusing sound?

ANS. Fibreglass insulation was the most capable for sound focusing.

Q.5 What is the use of sound focusing?

ANS. To obtain clear images in ultrasonic microscopy, holography, and ultrasonic viewers, sound focusing is used. And also used in scanning systems for medical diagnostic instruments with an ultrasonic beam.

 

You May Also Like To Create…

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *